
67 
 

International Journal of Recent Research and Review, Vol. IX, Issue 2, June 2016 
ISSN 2277 – 8322 

 
Air Temperature Prediction Using Evolutionary 

Artificial Neural Networks 
 

Raj Yadav 
Assistant Professor/ Software Engineer 

Kautilya Institute of Technology & Engineering 
Email : yadavrajc@gmail.com 

 

 
Abstract: Evolutionary neural networks have 
been applied successfully in the past to many 
prediction problems. In this paper I describe an 
evolutionary neural network, which attempts to 
predict the maximum air temperature given the 
day and month of the year.  

 

I. INTRODUCTION 

As scientists and philosophers ponder human 
intelligence, several profound questions arise: 
what is intelligence and is it measurable, does 
intelligence even exist, and can it be 
reproduced in a machine? We immediately go 
to the best empirical source about what gives 
humans the capacity to be intelligent, the 
brain. While trying to classify and understand 
this vital organ, early researchers attempted to 
partition the brain into smaller pieces until 
they arrived at the brain cell and neurons. 
They found that there existed many neurons in 
the brain, which were all interconnected and 
formed a sort of network, a Neural Network 
(NN).  

As these seemed like simple enough constructs 
when looked at in a micro scale compared to 
the brain, researchers in the 1940’s [1] 
attempted to model this construct of 
interconnected nodes in a computer to improve 
computing power. The Neural Network model 
researchers agreed upon was a series of 
connected nodes, each of which was a simple 
calculator. Every connection had a weight 
associated with it so that the influence of one 
node over another could be determined and 
controlled. 

In a similar light, as human understanding of 
the natural laws of evolution and survival-of-
the-fittest grew scientists successfully used 
them to create a new model of computation, 
Genetic Algorithms (GAs). The basis of GAs 
is that those of a population not suited for an 
environment (solution) will die off leaving the 
strongest to procreate. These progeny will then 
be allowed to mutate and evolve towards the 
fitness that best suits the environment; as the 
environment changes, so the population 
evolves to fit the new environment. Possibly 
the best product of GAs is the ability to 
converge quickly to a solution in a large 
search space. 

When these two models, NNs and GAs, were 
brought together they formed an Evolutionary 
Artificial Neural Network (EANN). The 
necessity for this relationship came as 
researchers realized the benefits of searching 
for the optimal training set, topology, 
thresholds, and weights to increase the 
generalization, accuracy, and performance of a 
network. For a more through discussion about 
EANNs see [2]. 

The NN model seems to be perfectly suited to 
pattern recognition and inductive reasoning. 
For this reason EANNs have been used 
heavily in many applications where these 
problems are found, such as River Flow 
Prediction [3], Sun Spot Prediction [4], Image 
Processing Tasks [5], Classifying Cancer Cells 
[6], Classifications of Sonar Targets [7], and 
many more. 
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II. WEATHER PREDICTION 

As it is well known, weather prediction and 
meteorology is a very complex and imprecise 
science. The chief reason for this complexity 
is that the atmosphere of the Earth is 
essentially a chaotic system. Currently, to get a 
reasonable accurate prediction of weather 
patterns, supercomputers are used to model the 
atmosphere using as many known atmospheric 
variables as possible [8]. 

EANNs fit this problem well for 5 reasons: 
they would reduce the computational power 
required to accurately predict atmospheric 
variables from a supercomputer to a single 
NN, a large database is available of historical 
weather data which can be used as training 
sets, EANNs find the best generalized network 
to solve patterns outside their training sets (in 
comparison to ANNs), EANNs can detect and 
utilize hidden patterns in data to arrive at a 
solution, and finally, EANNs have been shown 
to accurately predict irregular and complex 
variables in past work [3,4,5,6,7]. 

To show whether this conjecture is true and 
atmospheric variables can be predicted to 
within a reasonable range using EANNs, an 
EANN will be designed using historical daily 
weather data to predict the daily maximum 
temperature of a future date. 

 

III. IMPLEMENTATION 
 

Data Sets 

The data collected by the University of   

California Statewide Integrated Pest 
Management Project in the UC IPM California 
Weather Database [9] was used to provide 
training, test, and validation sets for the 
EANN. The data set selected was collected at 
a Brentwood, California (BRNTWOOD.A) 
weather station while some data from Tracy 
(TRACY.A) and Davis (DAVIS.A) was used 
to fill in the missing values. Together, these 
weather stations provided the date, daily 
precipitation, max temperature, min 

temperature, max soil temperature, min soil 
temperature, max relative humidity, min 
relative humidity, solar radiation, and wind 
speed between November 18, 1985 and 
November 18, 2001 (5845 days). While 
disregarding days with incomplete data 
(missing values), a training set was created 
from years 1985-November 18, 1993 (2920 
days), a test set was created from years 
November 19, 1993 – November 18, 1997 
(1462 days), and a final validation set was 
created from years November 19, 1997 – 2001 
(1463 days). 

Input and Output 

The inputs for the network were month, day, 
daily precipitation, max temperature, min 
temperature, max soil temperature, min soil 
temperature, max relative humidity, min 
relative humidity, solar radiation, and wind 
speed. Although each of these may or may not 
have a direct correlation with maximum daily 
temperature, the EANN determines exactly 
how much influence each of these variables 
has over temperature and assigns weights to 
their connections accordingly. The output of 
the network was its predicted value for the 
maximum temperature that given day. All 
inputs and outputs were, as is with all neural 
networks, normalized to [-1,1] using the 
function:  

normalized = (maximum_value – 
actual_value) / (maximum_value – 
minimum_value). 

This normalization allows for the most regular 
topology to be evolved by the EANN and 
thereby the best generalization of the network. 

Network Representation 

Because a EANNs convergence time is 
determined mainly by the method chosen to 
encode the NN representation in the GA, 
Kitano Grammar Encoding [10] was chosen 
over Direct Encoding for a faster convergence 
time [11]. This encoding method has the 
advantage of shortening the GAs chromosome 
length and still discovering a solution in the 
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search space very fast while representing the 
full connectivity matrix. Unlike Direct 
Encoding where each chromosome connection 
has genetic operators applied to it, Kitano 
Grammar Encoding uses the GAs power to 
evolve replacement rules to develop a correct 
grammar for the network. These replacement 
rules are then translated into replacement 
constants, which are not evolved, and thereby 
into the connection matrix. The primary 
difference in the methods is that, if n is the 
number of nodes in the network, Direct 
Encoding uses a matrix of size 2n and Kitano 
Encoding evolves a matrix of size n2. Since 
chromosome size is the key in convergence 
time for a GA, the smaller chromosomes of the 
Kitano Encoding will allow the population to 
converge at a faster rate [1]. 

Network Training Algorithm 

The well-known NN training algorithm, 
backpropagation (BP), was used to identify 
and correct the weights of the network. The 
BP algorithm was chosen for its simplicity. 
However better choices would have been 
QuickProp (QP), or Rprop (RP) because of 
their faster convergence time, and better 
performance on noisy, complex and deceptive 
surfaces [2].  

Network Parameters 

Table 1. Network Parameters 

Parameter Value 

Neuron transfer 
function 

Tanh 

Weight 
initialization 
function 

Gaussian; 
mean = 0.0; 
std = 5.0; 

Stopping criteria network_error = 0.01; 
max_iter = 500; 
conv = 200; 
eps = 10-4; 

BP error function 

 

mean square error 
(MSE); 

Training Epochs total_epoch = 30; 

 

IV. PERFORMANCE EVALUATION 

Because generalization of the network is its 
highest valued property, as is with most 
prediction networks, performance on the test 
and validation data sets was used to evaluate 
the fitness of each network. After the network 
had been trained, and each of the test and 
validation sets were evaluated by the resulting 
network, the number of results that were 
within the allowed prediction error bounds 
were returned to the GA environment for 
fitness evaluation and population modification. 

Reproduction Operators 

The genetic operator crossover was chosen as 
the means or chromosome reproduction within 
the genetic population. From the chromosomes 
that were not eliminated because they were 
nonfunctioning or did not meet performance 
criteria, two were chosen randomly. The first 
randomly chosen chromosome created a new 
chromosome using the first half of its 
production rules; the second chromosome 
finished the new chromosome by supplying 
the second half of its production rules. This 
method was successful, however a better 
reproduction operator could be produced to 
guarantee the resultant chromosome (network) 
from the pairing be functional, as is not the 
case with this specified crossover method. 

Algorithm 

The algorithm that was used is very simple. 

1. Randomly create a population of 
chromosomes 

2. Build each chromosome as a network 
a. Train network 
b. Test network 
c. Validate network 

3. Fitness quantified by number of tests that 
returned results within error bounds 

4. Eliminate chromosomes (networks) that 
do not meet fitness bounds 

5. Apply genetic operator crossover to non-
eliminated chromosomes 
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6. Apply genetic operator mutation to 
population 

7. If population does not meet fitness 
requirements return to step 2 
 

V. TESTS AND RESULTS 

Runs 

There were three runs made, each having their 
genetic chromosome length and error bounds 
varied to gain a better understanding of the 
ability of an EANN to predict the maximum 
daily temperature. Each run used the same 
network parameters, training, test, and 
validation data sets. The results are below. The 
error bound is the maximum number of 
degrees in temperature by which the network 
can be incorrect and still be considered a valid 
prediction. The genetic chromosome size is the 
number of bits in the genetic chromosome 
when the Kitano Grammar is translated into a 
connection matrix. The generations to 
convergence is how many genetic generations 
were required to evolve the best network given 
network parameters. The number of 
predictions within error bounds (correct) is the 
number of validation dates (1463 days) in the 
validation data set that were predicted within 
the error bounds. 

Run One 

Table 2. Run One Data 

Error bounds +/- 2 degrees 

Genetic chromosome 
size 

25 bits 

Generations to 
convergence 

48 

Number of predictions 
within error bounds 

1111, 75.93%; 

 

The first run shows that only 75.93% 
prediction accuracy is attained when the error 
bounds are restricted to 2 degrees. Although 
this is a tight prediction requirement, it is still 
a low accuracy rate. 

Run Two 

Table 3. Run Two Data 

Error bounds +/- 3 degrees 

Genetic chromosome 
size 

25 bits 

Generations to 
convergence 

45 

Number of predictions 
within error bounds 

1199, 81.95% 

 

This run was designed to see how strong the 
correlation is between the error bound variable 
and the accuracy rate. Compared with run one, 
these parameters do very well; attaining a 
81.95% accuracy rate with a 3 degree error 
bound, that is a 6.02% improvement with only 
losing 1 degree of accuracy. However, the 
resulting accuracy rate of 81.95% is lower 
than expected, and unreasonable given other 
methods of computational weather prediction. 

Run Three 

Table 4. Run Three Data 

Error bounds +/- 2 degrees 

Genetic chromosome 
size 

50 bits 

Generations to 
convergence 

130 

Number of predictions 
within error bounds 

1163, 79.49% 

 

Given that we have a standard for our network 
to predict the maximum air temperature within 
2 degrees from the first run, the third run was 
designed to see how the genetic population 
size (and its resulting network) affected the 
prediction accuracy. With a 200% increase in 
chromosome size, the accuracy rate rises 
3.56%. However, the accuracy rate attained 
with 50 bits is nearly that when we lose a 
degree of accuracy. 
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The reason for the chromosome length being 
involved in the prediction accuracy is that the 
larger the connection matrix, the greater the 
number of networks that can be created; this is 
because there can now be 50 nodes in the 
network where as previously there could be 
only 25. 

 

VI. CONCLUSION 

Meteorology is a very difficult science because 
of the complex and chaotic systems involved. 
At times these systems make forming 
predictions nearly impossible, as shown with 
severe storm prediction [12]. However, it is 
this author’s belief that reasonable maximum 
temperature predictions within 2 degrees 
should occur with at least a 90% accuracy rate 
to rival other meteorological prediction 
models. It was shown that given the 
specifications of this system and the provided 
data, with a 2-degree error bound only a 
79.49% accuracy rate was achieved. 

The author believes that a reasonable 
prediction accuracy rate could be achieved 
with this methodology given a larger training 
set, using faster and better training algorithms, 
and more known atmospheric values. This 
objective will obviously be the goal of future 
work in this area of research. 
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